THE KENYA NATIONAL EXAMINATIONS COUNCIL **Kenya Certificate of Secondary Education**

190

Paper 3

CHEMISTRY – (Practical)

Mar. $2022 - 2\frac{1}{4}$ hours

Name	Index Number
Candidate's Signature	Date

2021 KCSE 2021 RCSE > Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided in the question paper.
- (d) You are not allowed to start working with the apparatus for the first 15 minutes of the 21/4 hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- (e) All working must be clearly shown where necessary.
- (f) Non-programmable silent electronic calculators and KNEC mathematical tables may be used.
- (g) This paper consists of 8 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- Candidates should answer the questions in English. (i)

	Question	Maximum Score	Candidate's Score
	1	15	and the second
	2	8	
	3	17	E A LAND
j. Na	Total Score	40	
L		and a second	102

For Examiner's Use Only

0074

915034

1. You are provided with:

- Solution A: 0.10 M solution of a monobasic acid A;
- Solution B: Sodium hydroxide solution;
- Solution C: containing 10.0 g of acid C per litre of solution.

You are required to:

- Standardise solution B using solution A;
- Determine the number of moles of sodium hydroxide that react with one mole of acid C.

PROCEDURE I

Fill the burette with solution A. Using a pipette and pipette filler, place 25.0 cm^3 of solution B into 250 ml conical flask. Titrate solution B with solution A using phenolphthalein indicator and record your results in Table 1. Repeat the titration and complete Table 1.

(a) **Table 1**

	I	п	ш
Final burette reading			
Initial burette reading			
Volume of solution A used, cm ³	er.c	b.ke	

(b) Calculate the:

(1 mark)	average volume of solution A used.	(i)
(1 mark)	number of moles of solution A in the average volume used.	(ii)

(iii) number of moles of sodium hydroxide (N) in 25.0 cm³ of solution B. (1 mark)
 (iv) concentration of sodium hydroxide in moles per litre. (1 mark)

3

PROCEDURE II

Clean the burette and fill it with solution C. Using a pipette and pipette filler, place 25.0 cm^3 of solution B into a 250 ml conical flask.

Titrate solution B with solution C using phenolphthalein indicator and record your results in Table 2. Repeat the titration and complete Table 2.

(c) Table 2

	Teac	ner.c	O.Ke	III
Final bur	rette reading			
Initial bu	rette reading			
Volume o used, cm	of solution \mathbf{C}_{3}			
L				(3 marks)

(d) Calculate the:

(i) average volume of solution C used. (1 mark)

490

(ii)	concentration in moles per litre, of solution C, given that the relative for mass of acid C is 210.0 .	ormula (1 mark)
		••••••
		••••••
(iii)	number of moles of acid C in the average volume used.	(1 mark)
		•••••
(i)	Write the ratio of moles of acid C to moles of sodium hydroxide (N) in 25.0 cm^3 of solution B.	the (1 mark)
		•••••
(ii)	Determine the number of moles of sodium hydroxide that react with one acid C.	e mole of (1 mark)
	Teacher.co.ke	

2. You are provided with solid D.

You are required to determine the freezing point of solid D.

PROCEDURE

(e)

- (i) Fill a 250 ml beaker with about 200 cm³ of tap water and heat the water until it boils.
- (ii) Place all **solid D** provided in a **dry** test tube and insert a thermometer into the solid.
- (iii) Place the test tube in the boiling water and allow the solid to heat until it all melts.
- (iv) When the temperature of the melted solid is approximately 90 °C, remove the test tube, wipe the sides with tissue paper and then place the test tube into an empty 250 ml beaker.
- (v) Start the stop watch or clock when the temperature of the melted solid is 85.0 °C.
- (vi) As the solid cools, measure and record its temperature every 30 seconds and complete **Table 3**.

Download this and other FREE materials from https://teacher.co.ke/notes

Table 3 (a)

Time, s	0	30	60	90	120	150	180	210	240	270	300
Temperature, °C											

(4 marks)

On the grid provided, plot a graph of temperature (vertical axis) against time. (b)

"e/notes

Download this and other FREE materials from https://1

- 3. You are provided with solid E. Carry out the following tests and record your observations and inferences in the spaces provided.
 - (a) Place **all** the **solid E** in a boiling tube. Add about 10 cm³ of dilute nitric(V) acid, warm the mixture and then allow to stand until all the solid dissolves. Add about 10 cm³ of distilled water to the solution and shake. Retain the solution for tests (**b**) and (**c**).

Observations	Inferences

(2 marks)

(1 mark)

- (b) Use about 2 cm^3 portions of the solution obtained in 3(a) for each of the following tests.
 - (i) To the first portion add 2 or 3 drops of aqueous barium nitrate.

Observations	Inferences
Teephone	a ka
reacher.c	U.NE

(1 mark)

(1 mark)

(ii) To the second portion add 2 or 3 drops of aqueous lead(II) nitrate.

Observations	Inferences

(1 mark)

(1 mark)

 Observations
 Inferences

 (1 mark)
 (1 mark)

To the third portion add aqueous sodium hydroxide dropwise until in excess.

(iv) Place about 3 cm³ of aqueous ammonia in a test tube. To the **fourth portion**, add all the aqueous ammonia from the test tube dropwise.

Observations	Inferences
(1 mark)	(1 mark)

(c) To the remaining solution of solid E in the boiling tube, add all the solid G provided. Shake the mixture for about 2 minutes. Filter the mixture into a boiling tube. Retain the filtrate for tests (i) and (ii) below.

Observations	Inferences

(1 mark)

(1 mark)

(iii)

To about 2 cm³ portion of the filtrate, add aqueous ammonia dropwise until in (i) excess.

8

Observations	Inferences
(1 mark)	(1 mark)

To about 2 cm³ portion of the filtrate add 2 or 3 drops of dilute hydrogen peroxide (ii) solution.

Observations	Inferences
(1 mark)	(1 mark)

THIS IS THE LAST PRINTED PAGE.

915034

Kenya Certificate of Secondary Education, 2021 233/3

0074

and the second